Journal Articles

2024

[44] Y. Ishii, N. Matubayasi, H. Washizu et al., in preparation (2024).

[43] Y. Ishii, H. Torii, Y. Ikemoto, H. Washizu et al., in preparation (2024).

[42] H. Shishido, N. Yusa, H. Hashizume, Y. Ishii, N. Ohtori, “Numerical Prediction of Heat Transfer Properties of Molten Salt Flinabe for a Coolant in a Nuclear System”, preprint (2024).
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4514436

[41] Y. Ishii, S. Kiko, N. Ohtori, “Analysis of the Transport Properties of Alkaline-Earth Halides MX2 (M = Ca, Sr, Ba, and X = F, Cl, Br) by Simulation with a Polarizable Ion Model”, Electrochemistry, in press (2024).
DOI: 10.5796/electrochemistry.23-69160

[40] M. Suzuki, Y. Asano, Y. Ishii, “Surface Ionic Coordination of Al2O3–CaO–Based Molten Slag Induced by Structural Relaxation”, J. Am. Ceram. Soc. in press (2024).
DOI: 10.1111/jace.19818

[39] N. Yoneda, H. Iyama, T. Nagata, M. Katahira, Y. Ishii, K. Tada, K. Matsumoto, R. Hagiwara, “Fluoride Ion in Alcohols: Isopropanol vs Hexafluoroisopropanol”, J. Phys. Chem. Lett., 15, 1677-1685 (2024).
DOI: 10.1021/acs.jpclett.3c03619

[38] T. Kato, J. Uchida, Y. Ishii, G. Watanabe, “Aquatic Functional Liquid Crystals: Design, Functionalization, and Molecular Simulation” (Perspective), Adv. Sci., 11, 2306529-pp.1-13 (2024).
+ Selected as the Cover Image of Volume 11, Issue 8, at 2024.
+ Selected as the Hot Topic on Liquid Crystals
DOI: 10.1002/advs.202306529, Open Access

2023

[37] J. Park,  Y. Sasaki,  Y. Ishii,  S. Murayama,  K. Ohshiro,  K. Nishiura,  R. Ikura,  H. Yamaguchi,  A. Harada,  G. Matsuba,  H. Washizu,  T. Minami, Y. Takashima, “Leaf-Inspired Host–Guest Complexation-Dictating Supramolecular Gas Sensors”, ACS Appl. Mater. Interfaces, 15, 39777-39785 (2023).
DOI: 10.1021/acsami.3c04395

[36] K. Hamaguchi, H. Lu, S. Okamura, S. Kajiyama, J. Uchida, S. Sato, G. Watanabe, Y. Ishii, H. Washizu, G. Ungar, T. Kato, “Reentrant 2D Nanostructured Liquid Crystals by Competition between Molecular Packing and Conformation: Potential Design for Multistep Switching of Ionic Conductivity”, ChemPhysChem, 24, e202200927-pp.1-10 (2023).
DOI: 10.1002/cphc.202200927, Open Access
+ Selected as the Cover Image of Volume 24, Issue 8, at 2023.

2022

[35] T. Senri, N. Yamamoto, K. Kasahara, Y. Ishii, N. Matubayasi, “Crystal Growth of Urea and Its Modulation by Additives as Analyzed by All-Atom MD Simulation and Solution Theory”, J. Phys. Chem. B 126, 5274-5290 (2022).
DOI: 10.1021/acs.jpcb.2c01764

[34] Y. Ishii, N. Matubayasi, H. Washizu, “Nonpolarizable Force Fields through the Self-Consistent Modeling Scheme with MD and DFT Methods: From Ionic Liquids to Self-Assembled Ionic Liquid Crystals”, J. Phys. Chem. B 126, 4611-4622 (2022).
DOI: 10.1021/acs.jpcb.2c02782

[33] Y. Ikemoto, Y. Harada, M. Tanaka, S. Nishimura, D. Murakami, N. Kurahashi, T. Moriwaki, K. Yamazoe, H. Washizu, Y. Ishii, H. Torii, “Infrared Spectra and Hydrogen-Bond Configurations of Water Molecules at the Interface of Water-Insoluble Polymers under Humidified Conditions”, J. Phys. Chem. B 126, 4143-4151 (2022).
DOI: 10.1021/acs.jpcb.2c01702, Open Access

[32] Y. Kawai, J. Park, Y. Ishii, O. Urakawa, S. Murayama, R. Ikura, M. Osaki, Y. Ikemoto, H. Yamaguchi, A. Harada, T. Inoue, H. Washizu, G. Matsuba, Y. Takashima, “Preparation of Dual Cross-Network Polymers by Knitting Method and Evaluation of Their Mechanical Properties”, NPG Asia Mater. 14, 32-pp.1-11 (2022).
DOI: 10.1038/s41427-021-00348-2, Open Access

[31] K. Shinozaki, Y. Ishii, S. Sukenaga, K. Ohara, “Ultrafast Nanocrystallization of BaF2 in Oxyfluoride Glasses with Crystal-like Nanostructures: Implications for Upconversion Fiber Devices”, ACS Appl. Nano Mater. 5, 4281-4292 (2022).
DOI: 10.1021/acsanm.2c00205, Open Access

[30] K. Takemoto, Y. Ishii, H. Washizu, K. Kim, N. Matubayasi, “Simulating the Nematic-Isotropic Phase Transition of Liquid Crystal Model via Generalized Replica-Exchange Method”, J. Chem. Phys. 156, 014901-pp.1-8 (2022).
DOI: 10.1063/5.0073105, Open Access

[29] Y. Ishii, T. Murakami, N. Ohtori, “Molecular Size and Shape Effects: Tracer Diffusion and the Stokes-Einstein Relation”, J. Mol. Liq. 346, 118235-pp.1-7 (2022).
DOI: 10.1016/j.molliq.2021.118235

[28] M. Suzuki, N. Umesaki, Y. Ishii, “Highly Disordered Ionic Distribution in α‐Dicalcium Silicate for Structure Relaxation”, J. Am. Ceram. Soc. 105, 700-711 (2022).
DOI: 10.1111/jace.18096, Open Access.

2021

[27] Y. Ishii, N. Matubayasi, G. Watanabe, T. Kato, H. Washizu, “Molecular Insights on Confined Water in the Nanochannels of Self-Assembled Ionic Liquid Crystal”, Sci. Adv. 7, eabf0669-pp.1-14 (2021).
DOI: 10.1126/sciadv.abf0669, Open Access
+ Selected as the Cover and Web Image of Volume 7, Issue 31, at 2021.
+ Press release at the following web sites:
兵庫県大, 兵庫県教育委員会, 大阪大学, 北里大学, 東大
日本経済新聞web版, 日本の研究.com

[26] L. Hakim, Y. Ishii, N. Matubayasi, “Spatial-Decomposition Analysis of Electrical Conductivity in Mixtures of Ionic Liquid and Sodium Salt for Sodium-Ion Battery Electrolytes”, J. Phys. Chem. B 125, 3374-3385 (2021).
DOI: 10.1021/acs.jpcb.1c00372

2020

[25] A. Serva, A. Guerault, Y. Ishii, E. Gouillart, E. Burov, M. Salanne, “Structural and Dynamic Properties of Soda-Lime-Silica in the Liquid Phase”, J. Chem. Phys. 153, 214505-pp.1-9 (2020).
DOI: 10.1063/5.0029702

[24] L. Hakim, Y. Ishii, K. Matsumoto, R. Hagiwara, K. Ohara, Y. Umebayashi, N. Matubayasi, “Transport Properties of Ionic Liquid and Sodium Salt Mixtures for Sodium-Ion Battery Electrolytes from Molecular Dynamics Simulation with a Self-Consistent Atomic Charge Determination”, J. Phys. Chem. B 124, 7291-7305 (2020).
DOI: 10.1021/acs.jpcb.0c04078

[23] N. Ohtori, Y. Kondo, Y. Ishii, “Molecular Size and Shape Effects: Rotational Diffusion and the Stokes-Einstein-Debye Relation”, J. Mol. Liq. 314, 113764-pp.1-5 (2020).
DOI: 10.1016/j.molliq.2020.113764

[22] N. Ohtori, Y. Kondo, K. Shintani, T. Murakami, T. Nobuta, Y. Ishii, “The Stokes-Einstein Relation of Non-Spherical Molecular Liquids”, Chem. Lett. 49, 379-382 (2020).
DOI: 10.1246/cl.200021

[21] Y. Ishii, N. Matubayasi, “Self-Consistent Scheme Combining MD and Order-N DFT Methods: An Improved Set of Nonpolarizable Force Fields for Ionic Liquids”, J. Chem. Theory Comput. 16, 651-665 (2020).
DOI: 10.1021/acs.jctc.9b00793

2019

[20] F. Wu, S. Roy, A. S. Ivanov, S. K. Gill, M. Topsakal, E. Dooryhee, M. Abeykoon, G. Kwon, L. C. Gallington, P. Halstenberg, B. Layne, Y. Ishii, S. M. Mahurin, S. Dai, V. S. Bryantsev, C. J. Margulis, “Elucidating Ionic Correlations Beyond Simple Charge Alternation in Molten MgCl2-KCl Mixtures”, J. Phys. Chem. Lett. 10, 7603-7610 (2019).
DOI: 10.1021/acs.jpclett.9b02845

[19] P. S. Salmon, G. S. Moody, Y. Ishii, K. J. Pizzey, A. Polidori, M. Salanne, A. Zeidler, M. Buscemi, H. E. Fischer, C. L. Bull, S. Klotz, R. Weber, C. J. Benmore, S. G. MacLeod, “Pressure Induced Structural Transformations in Amorphous MgSiO3 and CaSiO3”, J. Non-Cryst. Solids X 3, 100024-pp.1-14 (2019).
DOI: 10.1016/j.nocx.2019.100024, Open Access

[18] K. Mizuta, Y. Ishii, K. Kim, N. Matubayasi, “Bridging the Gap Between Molecular Dynamics and Hydrodynamics in Nanoscale Brownian Motions”, Soft Matter 15, 4380-4390 (2019).
DOI: 10.1039/C9SM00246D

[17] Y. Ishii, N. Yamamoto, N. Matubayasi, B. W. Zhang, D. Cui, R. Levy, “Spatially-Decomposed Free Energy of Solvation Based on the Endpoint Density-Functional Method”, J. Chem. Theory Comput. 15, 2896-2912 (2019).
DOI: 10.1021/acs.jctc.8b01309

2018

[16] N. Ohtori, H. Uchiyama, Y. Ishii, “The Stokes-Einstein Relation for Simple Fluids: From Hard-Sphere to Lennard-Jones via WCA Potentials”, J. Chem. Phys. 149, 214501-pp.1-7 (2018).
DOI: 10.1063/1.5054577

2017

[15] H. Shishido, N. Yusa, H. Hashizume, Y. Ishii, N. Ohtori, “Thermal Design Investigation for a Flinabe Blanket System”, Fusion Sci. Tech. 72, 382-388 (2017).
DOI: 10.1080/15361055.2017.1330623

[14] N. Ohtori, S. Miyamoto, Y. Ishii, “Breakdown of the Stokes-Einstein Relation in Pure Lennard-Jones Fluids: From Gas to Liquid via Supercritical States”, Phys. Rev. E 95, 052122-pp.1-6 (2017).
DOI: 10.1103/PhysRevE.95.052122

2016

[13] Y. Ishii, M. Salanne, T. Charpentier, K. Shiraki, K. Kasahara, N. Ohtori, “A DFT-Based Aspherical Ion Model for Sodium Aluminosilicate Glasses and Melts”, J. Phys. Chem. C 120, 24370-24381 (2016).
DOI: 10.1021/acs.jpcc.6b08052

[12] Y. Ishii, N. Ohtori, “Molecular Insights into the Boundary Conditions in the Stokes-Einstein Relation”, Phys. Rev. E 93, 050104R-pp.1-5 (2016).
DOI: 10.1103/PhysRevE.93.050104

[11] M. Ogawa, Y. Ishii, N. Ohtori, “Dynamic Behavior of Mesoscopic Concentration Fluctuations in an Aqueous Solution of 1-Propanol by MD simulation”, Chem. Lett. 45, 98-100 (2016).
DOI: 10.1246/cl.150952

2015

[10] N. Ohtori, Y. Ishii, “Explicit Expressions of Self-Diffusion Coefficient, Shear Viscosity, the Stokes-Einstein Relation for Binary Mixtures of Lennard-Jones Liquids”, J. Chem. Phys. 143, 164514-pp.1-7 (2015).
DOI: 10.1063/1.4934627

[9] H. Shishido, N. Yusa, H. Hashizume, Y. Ishii, N. Ohtori, “Evaluation of Physical Properties of the Molten Salt Mixtures Flinabe for a Fusion Blanket System Using Molecular Dynamics Simulation”, Fusion Sci. Tech. 68, 669-673 (2015).
DOI: 10.13182/FST14-975

[8] D. Corradini, Y. Ishii, N. Ohtori, M. Salanne, “DFT-Based Polarizable Force Field for TiO2 and SiO2”, Model. Simul. Mater. Sci. Eng. 23, 074005-pp.1-10 (2015).
DOI: 10.1088/0965-0393/23/7/074005

[7] Y. Ishii, S. Kasai, M. Salanne, N. Ohtori, “Transport Coefficients and the Stokes-Einstein Relation in Molten Alkali Halides with Polarisable Ion Model”, Mol. Phys. 113, 2442-2450 (2015).
DOI: 10.1080/00268976.2015.1046527

[6] N. Ohtori, Y. Ishii, “Explicit Expression for the Stokes-Einstein Relation for Pure Lennard-Jones Liquids”, Phys. Rev. E 91, 012111-pp.1-5 (2015).
DOI: 10.1103/PhysRevE.91.012111

2014

[5] N. Ohtori, Y. Ishii, Y. Togawa, T. Oono, K. Takase, “Thermal Conductivity of Simple Liquids: Temperature and Packing-Fraction Dependence”, Phys. Rev. E 89, 022129-pp.1-5 (2014).
DOI: 10.1103/PhysRevE.89.022129

[4] Y. Ishii, K. Sato, M. Salanne, P. A. Madden, N. Ohtori, “Thermal Conductivity of Simple Liquids: Origin of Temperature and Packing Fraction Dependences”, J. Chem. Phys. 140, 114502-pp.1-4 (2014).
DOI: 10.1063/1.4868438

[3] Y. Ishii, K. Sato, M. Salanne, P. A. Madden, N. Ohtori, “Thermal Conductivity of Molten Alkali Metal Fluorides (LiF, NaF, KF) and Their Mixtures”, J. Phys. Chem. B 118, 3385–3391 (2014).
DOI: 10.1021/jp411781n

[2] Y. Ishii, T. Oono, K. Takase, N. Ohtori, “MD Study on the Thermal Conductivity of Molten Alkali Halides: Effect of Ionic Mass Difference”, Int. J. Thermophys. 35, 320-326 (2014).
DOI: 10.1007/s10765-014-1593-5

[1]T. Oono, Y. Ishii, K. Takase, N. Ohtori, “Dynamic Structure Factor of Charge Density in Molten LiI by MD Simulation”, Electrochemistry 82, 152-155 (2014).
DOI: 10.5796/electrochemistry.82.152

 


和文解説/総説

[5] 石井良樹, “自己組織化イオン液晶が形成するナノ界面のモデリングと水分子のダイナミクス”, アンサンブル(査読あり), 24, 152-159 (2022).
+ 表紙になりました

[4] 石井良樹, “溶液物性のモデリングと不均一分子集合系への展開”, 溶液化学研究会誌(査読あり), 1, 17-21 (2022).
http://solnchem.jp/jjasc/
+ 創刊号の表紙になりました.


[3] 石井良樹, 松林伸幸, “周期境界DFT計算とBlöchl電荷解析を基にした非分極力場の開発:イオン液体の輸送物性予測への応用”, アンサンブル(査読あり), 22, 142-150 (2020).
DOI: 10.11436/mssj.22.142, Open Access.

[2] 石井良樹, “分極力場の開発によるアルミノケイ酸ガラスの構造研究”, アンサンブル(査読あり), 20, 52-57 (2018).
DOI: 10.11436/mssj.20.52, Open Access.

[1] 石井良樹, 笠井智, 喜古佐太郎, 白木康一, 大鳥範和, “溶融塩の輸送係数と酸化物ガラスの構造に及ぼすイオン分極の効果”, Molten Salts(査読なし), 58, 97-104 (2015).
http://ci.nii.ac.jp/naid/40020696015/

 


和文書籍

[1] 石井良樹, 第1編第5章3 “イオン液体の分子モデリングと大規模シミュレーションへの展開”, pp.62-68, 監修:大内幸雄「イオン液体の実用展開に向けた最新動向」,シーエムシー出版 (2022/08).
ISBN: 978-4-7813-1674-1